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This paper considers the equilibrium of an unbounded elastic layer lying 
on a rigid immovable base and deformed by the action of an elastic. sym- 
metrically loaded, circular plate which is in contact with it over its 
entire surface (Fig. 1). 

Absence of friction between the plate and the layer as well as between 
the layer and the base is assumed. The plate will be assumed to have unit 
radius, the thickness of the layer will be denoted by h and that of the 
plate by 6. 

We will introduce into consideration the pressure p(r) in the region 
of contact between the plate and the layer. This makes it possible to 
reduce the problem to the consideration of two problems. The first will 
involve the study of the equilibrium of the layer under the effect of 
the symmetric loading p(r) distributed over the contact region (Fig. 2), 
the second comprises the study of the equilibrium of the plate under the 
action of a system of external loads and the pressure p(r) (Pig. 3). 

FIG. 1. FIG. 2. FIG. 3. 

1. We will find the link between the pressure and the normal displace- 

ments of the surface of the layer in the region of contact. For this 
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purpose we will follow 11 I. 

For the above assumptions the problem reduces to the integration of 

the equations of elasticity in cylindrical coordinates r, 4, z with the 

boundary conditions 

rrz = 0, w=C for z=h, T,.~=O for z=O 

0, = - p (2) (r < 1). 3, = 0 (r. > 1) for z=O 

(1.1) 

(1.2) 

Here, and later, u, II, IU are the components of the stress tensor in 

the described cylindrical coordinate system and uz, r Tz are the normal 

and tangential stresses. 

As a consequence of the symmetry of the problem, u = 0 and the remain- 

ing quantities do not depend on the coordinate 4. We will use the repre- 

sentation of the displacement vector in terms of harmonic functions due 

to Papkovich-Neuber 

Here p is the shear modulus, v Poisson’s ratio of the material of the 

layer and a,, al are functions which are harmonic in the region of the 

layer. ‘lhe stresses oz and r Tz are expressed in terms of these functions 

by the formulas 

It has 

$ in the 

aq o,_2(1_~)~_~_-__ 
a22 

.,,4[(1--2V)~,-~,-z $$I, &=-!j$ (1.4) 

been shown in [ 1 ] that by taking the harmonic functions t&r, 

integral representations 

(D1 = r A (h) sh h (h - z) J,, (hr) dh sh hh 
0 

(Dz = (1 - 2~) (I$+ 7 ).hA (h) -$& J,, (AT) dh 

(1.5) 

0 

we satisfy the boundary conditions (1.1). ‘lhe function AtA) is as yet 

unknown and J,,(y) is the Bessel function. We will express the displace- 

ment w of the upper boundary of the layer and the normal stresses on it 

in terms of the function A(X) 

Co co 

w=8 5 .,l (A)J,(i.r)dA, si = - * ).,.I (j.) s 1”;& dA (1.6) 
0 
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Here 8 is a coefficient characterizing the material of the layer 

8 .i-v F- 
P 

(1.7) 

and g(A) is the following function of A: 

g(h) = 
Ah + sh hheMhh 

hh+shhhchhh (1.8) 

Substituting (1.6) into (1.2) we find the conditions which must be 
imposed on the-function AA) 

(1.9) 

tr < I), O” hA(A) s o I-_g@) 
J,(hr)dh= 0 tr > 1) 

2. We will now consider the equilibrium of the plate shown in Fig. 3. 
We will assume that the center of the plate has a given displacement W, 
(in certain cases it is convenient to take instead of W0 the deflection 
of the plate at the edge). We denote by V(r) the deflection of the plate, 
fixed at the center, under the action of all forces applied to it, in 
addition to the pressure p(r) acting on the area of contact with the 
layer. 'Ihe deflection under the action of the pressure p(r) we denote by 
W; For the determination of the last we have the following equation and 
boundary conditions, corresponding to a free edge t 2 1: 

f${ry$[;$@~)]}=--$ (D= 12;:vl)) (2.1) 

forr=l (2.2) 

--dr= 
0 for r=l (2.3) 

w = 0 for I' ..= 0 {"A) 

Here I) is the cylindrical rigidity of the plate, E Young's modulus of 
its material and u Poisson's ratio. Using the expression p from (1.9), 
we integrate Equation (2.1) to give 

+c,(h:$(lnr -l)-t-C,(h)lnr+C,(h)ldh 

(2.5) 

As a consequence of the boundedness of the displacement W at the 
point r = 0 one must set C,(X) = 0. Satisfying the conditions (2.2), 
(2.3) and (2.4) we find 
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c, (1) = h2J, (A) + +$ [ - h2J2 (h) + -$ J, (A)] 

c2 P) = - h3J, (A), C,(h) = -1 (2.6 

'Ihe total displacement of the points of the plate in correspondence 

with what has been said at the beginning of the section is 

w = wo + v (F> + w (F) (2.7) 

Equating the displ acement of the plate to the vertical displacement of 

the upper boundary of the layer in the region of contact we obtain the 

second integral condition which must be imposed on the function A(X) 

8 
O3 A (A) s l-g(A) I Jo (W (1 - $9 + 
0 

(2.8) 

+ &[Jo(q+G;+C,$(lnr -I)-l]}dh= W,+V(r) @-Cl) 

Equations (1.9) and (2.8) represent a system of two integral equations 

for the determination of the function AA); 

3. Following [l I we will seek the solution 

form . 
c+A (A) 
l-g(h) 

= s cp(t)cosAtdt 
0 

where +(t) is a new unknown function. 

We will carry out on the right-hand side of 

of the system A(h) in the 

(3.1) 

(3.1) an integration by 

parts and substitute the result into the second equality (1.9) 

O3 hA(h) 

s i--g 
Jo (hr) dh = L [cp (1) i Jo (hr) sin A dh -5 v'(t)& rJ,(hr) sinAt&] 

0 0 0 0 

Using the known formula 

npH O<t<r 
npE t > r (3.2) 

we verify that the integrals on the right-hand side vanish for r > 1; 

therefore, the second condition (1.9) is satisfied identically. 

Substitution of A(A) from (3.1) into (2.81, change of order of inte- 

gration and utilization of the formla 
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CQ 

s Jo (Xr) cos htdh =7 

0 1 Cl for t>r 
@2 - p}--X for O<t< P 

We will use for the transformation of the second integral the formulas 

%= =/xx ‘ie= 

J&r)= * \ cos(hrsinO)d0, rs= $1 rasin~Od0, 1 = $ \ &I 

0 0 0 

‘fn 

PlIlr=$ 
SC 

(3.4) 

0 

lhe validity of the last fomula may be verified 
tion and utilization of the definite integral 

%x 

\ 
lnsinOd0 = - +- ITI2 

0 

directly by integra- 

1we substitute (3.4) into the second integral (3.3) and introduce in 
the first a new variable by setting t = r sin 8. ‘&en (3.3) reduces to 
the form 

‘ltn 

\ [y (r sin O)+ \ 9 (t) R (r sin 8, t) dt] do = W, + TV’ (r) (r < 1) (3.5) 
0 0 

Here 

R (x, t) = 
0 

- g (A) cos hz} dk (3.6) 

Equation (3.5) is the equation of Schlomifch i. 3 1 ’ 

the unique solution of which with a continuous derivative will be 

‘I,* 

F(x) = f [f(O) +X \ f’(ssinB)de] 
0 

(3.7) 
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In the original notation (3.7) takes the form 

(f(++- { Y((t)R( 

'I*= 

z, t)dt = +- W0 + z 
c s 

V'(zsin8) d0 
I (0 d 5 < 1) (3.8) 

0 0 

Equation (3.8) is a Fredholm integral equation of the second kind; If 

its solution with a continuous derivative in the interval [O,l I exists, 

then the formulas (3.1), (1.5) and (2.5) give the solution of the posed 

contact problem. Using Formula (3.2), one may obtain the expression for 

the pressure p in the contact region directly in terms of p 

(3.9) 

We will evaluate the force P acting on the layer from the side of the 
plate 

'lbus, the solution of the posed problem has been determined for given 

W,,. In the case where W, is unknown but the magnitude of a concentrated 

force applied at the center is given, the equation expressing the equal- 

ity of the forces, evaluated in (3.10), and the sum of the projections 

of all external forces applied to the plate on the z-axis serves for the 

determination of IV,. 

Ihe expression (3.6) may be simplified considerably. 

4. We substitute in (3.6) the expression for C, from (2;6); as a re- 

sult we obtain 

a, 

R(x, t) =-${I(x, t) + $[ 2;l=yy) \ J,(h)coshtdt- 
(4.1) 

l-u O°COSht -- - 
1-1-v s A 

~~(i,d~]-~(ln2~'-:)e,,(~) cosAtdA}- 

0 0 

-~G@+~)+W+~)I 

Here 

I@, t)= ~~(cosh7+~~z-~)d~,G(z)=~g(h)cos~~d~ (4.2) 
0 0 
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All integrals, except for G(x), may be evaluated. We use the formulas 

[31 
co co 

c (4.3) 
0” 

+ J, (h) dh = f (I- 2P), 1 J, (A) cos ht dA = VI --t* 
0 

We now differentiate I with respect to x 

aI ,%3sht 
al:= s 

T [ - sin hz + hsJo (‘h)] dh 

0 

(4.4) 

Differentiation is justified, since the obtained integral converges 

uniformly with respect to II. We introduce into the consideration the 

integral 
co 

II= s Ar’ALa [ - sin hz + hs Jo (I.)] dA (B > 0) 
0 

Obviously its limiting value for p + 0 coincides with aI/&. 

‘Ihe following formulas hold 14 1 : 

co 

s 
;e2 hJ, (A) d?. = ch ~tKo(~) 

0 

(4.5) 

co 

s sin )1x co8 N 
ha+ga dh= -$- {e-fi(x-f) Ei [p (z - t)] + e-p@+t) Ei [p (z + t)] - 

‘I, 
- eP(X---L) Ei [- p (z - t)] - eP(r+t) J$i [- p (z + t)]) (4.6) 

Here K,Q3) is the Macdonald function and Ei(B) is the exponential in- 

tegral. Using their expsnsions for small fl 

&(B)=-lnp+ln2+C+ . . . Ei[p]=C+lnlPI+p+... 

and Formulas (4.6) and (4.7) we obtain 

a1 
- = lim Il 
ax P-+0 

Here C is 

respect to x 

=z(2C+ln2-I)+ qInIa:-tl + *ln(z+t) (4.7) 

Euler’s constant (C = 0.5772). Integrating (4.7) with 

we obtain the expression for the unknown integral 

T 
1 = f 22 (2C + In 2 -1) + f- (2 - t)2 (]11;5 - t ( - +) + 

-t f (x -+ q2 (In (32 -/- t 1 - f) - + p (]I1 t_ .L) (4.8) 
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Substitution in (4.1) of the integrals (4.31, (4.8) gives 

Here 

R (z, t) = yK (x, t)- ; [G (J: t t) + G (ix - t)] 

K(s, q=q2c+1*2- z;;t+“V) (I-qq--tP)f+$taJ$ 

-j- H (2.- 1) + H (z +- t) - 2H (t) - JO - t= F 

H&l =$za(ln/zj-+), 

In the particular case where one is concerned with the interaction of 
the plate with the half-space (h + -1, the function g(h), and with it 
C(x), vanishes and the kernel R(x, t) of Equation (3.8) esswres the 
specially simple form 

R (2, 1) = yK (XI t) 

lhe free term of Equation (3.8) in this case does not change. Then 
Equation (3.8) and the other formulas give a new solution of the earlier 
studied problem (cf, for example, E 5,6 1 1. 

II. As and example we consider a plate, at the center of which there 
is applied % concentrated force P. In this case V(r) I 0 and Equation 
(3.8) takes the form 

1 

0 (LX) + 
s 

R (5, t) 0 (t) dt = 1 (U<zf$) (5.1) 
0 

into which there has been introduced for the convenience of the computa- 
tions the new unknown w(x), related to C&(X) by the equation 

(p (2) = i IV,0 (2) (5.2) 

In the ease of contact of the plate with an elastic half-space the 
equation is 

1 

o(I)+7 Kfs, t)w{t)dt=l 
s 

(O<~< f) 15.3) 
0 

We achieve the solution of (5.3) by a numerical method, replacing its 
integral by an approximate expression based on the tranezoidal rule. 
Satisfying Equation (5.3) at a number of points we obtain a system of 
linear algebraic equations. Its solution for not-too-large values of the 
parameter y has been found by the method of successive approximations. 
Using (3.10) and (5.2) we find the connection between the applied force 
P and the deflection of the plate under it 
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1 

s P9 
a (7) = m (t) di = 4w 

0 
0 

The following table gives the results of the computed values of the 
function O(X) of (5.31 for y = 0.0, 0.3. 0.5, 

0.0 

0”:: 
8:: 
0.5 
0.G 
0.7 
0.8 
0.9 
1.0 

-Go.0 

:*tE 
1:ooO 
:-z 
1:OOO 
l.ooo 
l.ooo 

:%i 
Ii00 

TABLE 

u=o.3 

Ei 
0:971 
0.943 
0.908 
0.867 
0.821 
0.769 
0.712 
0 651 
0: 584 

1.0, 1.5. 

u=o.5 
-- 

zi 
0:957 
0.915 
0.863 
0.802 
0.734 
0.657 
0.574 
0.482 
0.382 

y=l.O 

Ei 
01931 
0.865 
0.783 
0.689 
0.582 
0,463 
0.332 
0.187 
0.029 

u=1.5 

A%i 
01913 
0.830 
0.730 
0.615 
0.484 
0.338 
0.177 

r;::; 

For the stated values of 
ante with (5.4) are 

y the values of the function a(y) in accord- 

7=0.00 0.3 0.5 1.0 1.5 

a (r) = 1.000 0.843 0.766 0.633 0.546 

It follows from the table that for y > 1.5 the function o(x) remains 
negative for x near unity. Then, in correspondence with (3.9), the 
pressure p likewise remains negative for r = l(ge > 0). In the formula- 

tion of the problem complete attachment of the plate to the layer has 
been assumed, and therefore the obtained results are fully applicable. 

If it is admitted that the plate lies freely on the layer, its edge 
will tear away from the layer for the stated values of y and the above 

solution loses meaning. Clearly such tearing occurs for values of y 

larger than y, for which the condition o(l) = 0 is fulfilled. 

More detailed computations than those given in the table show the 
critical value y : y, = 1.053. For the study of the problem of a layer 
of finite thickness the computations may be performed by the same method 

using the table of the function C(X) of [ 1 I. 

We present the results of computing y as a function of the thickness 
l 

h 
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1 -- 0 

7”. = 1.053 

0.5 1 2 

1.019 0.889 0.623 

This dependence of y (c’) permits the following conclusion to be 
drawn: for unchanging miterials of the layer and plate the minimum thick- 
ness of the plate corresponding to contact over its entire area increases 
with decreasing thickness of the layer. 
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